Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
BMJ Open ; 14(5): e085272, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38740499

RESUMO

INTRODUCTION: A significant proportion of individuals suffering from post COVID-19 condition (PCC, also known as long COVID) can present with persistent, disabling fatigue similar to myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) and post-viral fatigue syndromes. There remains no clear pharmacological therapy for patients with this subtype of PCC, which can be referred to as post-COVID fatigue syndrome (PCFS). A low dose of the opioid antagonist naltrexone (ie, low-dose naltrexone (LDN)) has emerged as an off-label treatment for treating fatigue and other symptoms in PCC. However, only small, non-controlled studies have assessed LDN in PCC, so randomised trials are urgently required. METHODS AND ANALYSIS: A prospective, randomised, double-blind, parallel arm, placebo-controlled phase II trial will be performed to assess the efficacy of LDN for improving fatigue in PCFS. The trial will be decentralised and open to eligible individuals throughout the Canadian province of British Columbia (BC). Participants will be recruited through the province-wide Post-COVID-19 Interdisciplinary Clinical Care Network (PC-ICCN) and research volunteer platform (REACH BC). Eligible participants will be 19-69 years old, have had a confirmed or physician-suspected SARS-CoV-2 infection at least 3 months prior and meet clinical criteria for PCFS adapted from the Institute of Medicine ME/CFS criteria. Individuals who are taking opioid medications, have a history of ME/CFS prior to COVID-19 or history of significant liver disease will be excluded. Participants will be randomised to an LDN intervention arm (n=80) or placebo arm (n=80). Participants in each arm will be prescribed identical capsules starting at 1 mg daily and follow a prespecified schedule for up-titration to 4.5 mg daily or the maximum tolerated dose. The trial will be conducted over 16 weeks, with assessments at baseline, 6, 12 and 16 weeks. The primary outcome will be fatigue severity at 16 weeks evaluated by the Fatigue Severity Scale. Secondary outcomes will include pain Visual Analogue Scale score, overall symptom severity as measured by the Patient Phenotyping Questionnaire Short Form, 7-day step count and health-related quality of life measured by the EuroQol 5-Dimension questionnaire. ETHICS AND DISSEMINATION: The trial has been authorised by Health Canada and approved by The University of British Columbia/Children's and Women's Health Centre of British Columbia Research Ethics Board. On completion, findings will be disseminated to patients, caregivers and clinicians through engagement activities within existing PCC and ME/CFS networks. Results will be published in academic journals and presented at conferences. TRIAL REGISTRATION NUMBER: NCT05430152.


Assuntos
Naltrexona , Antagonistas de Entorpecentes , Humanos , Método Duplo-Cego , Naltrexona/administração & dosagem , Naltrexona/uso terapêutico , Colúmbia Britânica , Antagonistas de Entorpecentes/administração & dosagem , Antagonistas de Entorpecentes/uso terapêutico , COVID-19/complicações , Síndrome de Fadiga Crônica/tratamento farmacológico , Estudos Prospectivos , Ensaios Clínicos Controlados Aleatórios como Assunto , SARS-CoV-2 , Síndrome de COVID-19 Pós-Aguda , Adulto , Masculino , Ensaios Clínicos Fase II como Assunto , Feminino
2.
Sci Rep ; 14(1): 5610, 2024 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-38453966

RESUMO

Given that ketogenic diets (KDs) are extremely high in dietary fat, we compared different fats in KDs to determine which was the best for cancer prevention. Specifically, we compared a Western and a 15% carbohydrate diet to seven different KDs, containing either Western fats or fats enriched in medium chain fatty acids (MCTs), milk fat (MF), palm oil (PO), olive oil (OO), corn oil (CO) or fish oil (FO) for their ability to reduce nicotine-derived nitrosamine ketone (NNK)-induced lung cancer in mice. While all the KDs tested were more effective at reducing lung nodules than the Western or 15% carbohydrate diet, the FO-KD was most effective at reducing lung nodules. Correlating with this, mice on the FO-KD had low blood glucose and the highest ß-hydroxybutyrate level, lowest liver fatty acid synthase/carnitine palmitoyl-1a ratio and a dramatic increase in fecal Akkermansia. We found no liver damage induced by the FO-KD, while the ratio of total cholesterol/HDL was unchanged on the different diets. We conclude that a FO-KD is superior to KDs enriched in other fats in reducing NNK-induced lung cancer, perhaps by being the most effective at skewing whole-body metabolism from a dependence on glucose to fats as an energy source.


Assuntos
Dieta Cetogênica , Gorduras Insaturadas na Dieta , Neoplasias Pulmonares , Camundongos , Animais , Óleos de Peixe/farmacologia , Óleos de Peixe/metabolismo , Gorduras Insaturadas na Dieta/metabolismo , Óleos de Plantas/farmacologia , Óleos de Plantas/metabolismo , Neoplasias Pulmonares/induzido quimicamente , Neoplasias Pulmonares/prevenção & controle , Gorduras na Dieta/metabolismo , Azeite de Oliva , Dieta , Carboidratos
3.
Pediatr Res ; 95(3): 634-640, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37833530

RESUMO

BACKGROUND: The Sudden Infant Death Syndrome (SIDS) has been associated with increased peripheral serotonin and an abnormal colonic microbiome, suggesting the colonic metabolome may also be abnormal. This study addresses this potential correlation by comparing colonic autopsy tissue from SIDS to age-matched non-SIDS controls. METHODS: Untargeted metabolomic analysis by mass spectrometry is used to assess human colonic metabolomic differences including serotonin. Expression of genes associated with colonic serotonin synthesis and transport (TPH1, TPH2, DDC, SCL6A4) is measured by qRT-PCR. Microbiome analysis is performed to compare the SIDS and non-SIDS colonic microbiome. RESULTS: Unsupervised hierarchical cluster and principal component analyses of metabolomic data shows increased variability in the SIDS cohort and separation of SIDS cases from the non-SIDS controls. There is a trend toward increased serotonin in the SIDS cohort but there is no significant difference in expression of the serotonin synthesis and transport genes between SIDS and non-SIDS control cohorts. Microbiome analysis shows no significant difference between the SIDS and non-SIDS control cohorts. CONCLUSIONS: This study demonstrates increased variability in the colonic metabolome and a trend towards increased colonic serotonin in SIDS. The underlying cause of colon metabolomic variability, and its potential role in SIDS pathogenesis, warrants further investigation. IMPACT STATEMENT: The key message of this article is that SIDS is associated with an aberrant colonic metabolome. This is a novel observation suggesting another component in the pathophysiology underlying SIDS. Investigation of why the colonic metabolome is aberrant may offer new insights to SIDS pathogenesis and new strategies to reduce risk.


Assuntos
Serotonina , Morte Súbita do Lactente , Lactente , Humanos , Serotonina/metabolismo , Morte Súbita do Lactente/genética , Proteínas da Membrana Plasmática de Transporte de Serotonina/genética , Metaboloma , Colo/metabolismo
4.
Arterioscler Thromb Vasc Biol ; 44(1): 177-191, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38150518

RESUMO

BACKGROUND: The heart relies heavily on external fatty acid (FA) for energy production. VEGFB (vascular endothelial growth factor B) has been shown to promote endothelial FA uptake by upregulating FA transporters. However, its impact on LPL (lipoprotein lipase)-mediated lipolysis of lipoproteins, a major source of FA for cardiac use, is unknown. METHODS: VEGFB transgenic (Tg) rats were generated by using the α-myosin heavy chain promoter to drive cardiomyocyte-specific overexpression. To measure coronary LPL activity, Langendorff hearts were perfused with heparin. In vivo positron emission tomography imaging with [18F]-triglyceride-fluoro-6-thia-heptadecanoic acid and [11C]-palmitate was used to determine cardiac FA uptake. Mitochondrial FA oxidation was evaluated by high-resolution respirometry. Streptozotocin was used to induce diabetes, and cardiac function was monitored using echocardiography. RESULTS: In Tg hearts, the vectorial transfer of LPL to the vascular lumen is obstructed, resulting in LPL buildup within cardiomyocytes, an effect likely due to coronary vascular development with its associated augmentation of insulin action. With insulin insufficiency following fasting, VEGFB acted unimpeded to facilitate LPL movement and increase its activity at the coronary lumen. In vivo PET imaging following fasting confirmed that VEGFB induced a greater FA uptake to the heart from circulating lipoproteins as compared with plasma-free FAs. As this was associated with augmented mitochondrial oxidation, lipid accumulation in the heart was prevented. We further examined whether this property of VEGFB on cardiac metabolism could be useful following diabetes and its associated cardiac dysfunction, with attendant loss of metabolic flexibility. In Tg hearts, diabetes inhibited myocyte VEGFB gene expression and protein secretion together with its downstream receptor signaling, effects that could explain its lack of cardioprotection. CONCLUSIONS: Our study highlights the novel role of VEGFB in LPL-derived FA supply and utilization. In diabetes, loss of VEGFB action may contribute toward metabolic inflexibility, lipotoxicity, and development of diabetic cardiomyopathy.


Assuntos
Cardiomiopatias Diabéticas , Insulina , Ratos , Animais , Insulina/farmacologia , Fator B de Crescimento do Endotélio Vascular/genética , Fator B de Crescimento do Endotélio Vascular/metabolismo , Ratos Wistar , Miócitos Cardíacos/metabolismo , Ácidos Graxos/metabolismo , Cardiomiopatias Diabéticas/genética , Cardiomiopatias Diabéticas/metabolismo , Triglicerídeos/metabolismo , Lipase Lipoproteica/metabolismo , Miocárdio/metabolismo
5.
Front Nutr ; 9: 1051418, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36532545

RESUMO

Objectives: Given the current controversy concerning the efficacy of omega 3 supplements at reducing inflammation, we evaluated the safety and efficacy of omega 3 on reducing inflammation in people with a 6-year lung cancer risk >1.5% and a C reactive protein (CRP) level >2 mg/L in a phase IIa cross-over study. Materials and methods: Forty-nine healthy participants ages 55 to 80, who were still smoking or had smoked in the past with ≥30 pack-years smoking history, living in British Columbia, Canada, were randomized in an open-label trial to receive 2.4 g eicosapentaenoic acid (EPA) + 1.2 g docosahexaenoic acid (DHA)/day for 6 months followed by observation for 6 months or observation for 6 months first and then active treatment for the next 6 months. Blood samples were collected over 1 year for measurement of plasma CRP, plasma and red blood cell (RBC) membrane levels of EPA, DHA and other fatty acids, Prostaglandin E2 (PGE2), Leukotriene B4 (LTB4) and an inflammatory marker panel. Results: Twenty one participants who began the trial within the active arm completed the trial while 20 participants who started in the control arm completed the study. Taking omega 3 resulted in a significant decrease in plasma CRP and PGE2 but not LTB4 levels. Importantly, the effect size for the primary outcome, CRP values, at the end of the intervention relative to baseline was medium (Cohen's d = 0.56). DHA, but not EPA levels in RBC membranes inversely correlated with PGE2 levels. Omega 3 also led to a significant reduction in granulocytes and an increase in lymphocytes. These high-dose omega 3 supplements were well tolerated, with only minor gastrointestinal symptoms in a subset of participants. Conclusion: Omega 3 fatty acids taken at 3.6 g/day significantly reduce systemic inflammation with negligible adverse health effects in people who smoke or have smoked and are at high risk of lung cancer.ClinicalTrials.gov, NCT number: NCT03936621.

6.
Curr Dev Nutr ; 6(7): nzac099, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35854937

RESUMO

Background: Early childhood is a period of rapid brain development, with increases in synapses rich in the omega-3 (ω-3) fatty acid, DHA (22:6ω-3) continuing well beyond infancy. Despite the importance of DHA to neural phospholipids, the requirement of dietary DHA for neurodevelopment remains unclear. Objectives: The aim was to assess the dietary DHA and DHA status of young children, and determine the association with cognitive performance. Methods: This was a cross-sectional study of healthy children (5-6 y), some of whom were enrolled in a follow-up of a clinical trial (NCT00620672). Dietary intake data (n = 285) were assessed with a food-frequency questionnaire (FFQ) and three 24-h recalls. Family characteristics were collected by questionnaire, and anthropometric data measured. Venous blood was collected, cognitive performance assessed using several age-appropriate tools including the Kaufman Assessment Battery for Children. The relation between dietary DHA, RBC DHA, and child neurodevelopment test scores was determined using Pearson's correlation or Spearman's rho, and quintiles of test scores compared by Mann-Whitney U test. Results: Child DHA intakes were highly variable, with a stronger association between RBC DHA and DHA intake assessed by FFQ (rho = 0.383, P < 0.001) compared with one or three 24-h recalls. Observed ethnic differences in DHA intake status as well as neurodevelopmental test scores led to analysis of the association between DHA intake and status with neurodevelopment test scores for White children only (n = 190). Child RBC DHA status was associated with neurodevelopment test scores, including language (rho = 0.211, P = 0.009) and short-term memory (rho = 0.187, P = 0.019), but only short-term memory was associated with dietary DHA (rho = 0.221, P = 0.003). Conclusions: Child RBC DHA but not dietary DHA was associated with multiple tests of cognitive performance. In addition, DHA intake was only moderately associated with RBC DHA, raising complex questions on the relation between diet, DHA transfer to membrane lipids, and neural function.

7.
Am J Clin Nutr ; 116(3): 820-832, 2022 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-35575618

RESUMO

BACKGROUND: Dietary methyl donors (e.g., choline) support the activity of the phosphatidylethanolamine N-methyltransferase (PEMT) pathway, which generates phosphatidylcholine (PC) molecules enriched in DHA that are exported from the liver and made available to extrahepatic tissues. OBJECTIVES: This study investigated the effect of prenatal choline supplementation on biomarkers of DHA status among pregnant participants consuming supplemental DHA. METHODS: Pregnant participants (n = 30) were randomly assigned to receive supplemental choline intakes of 550 mg/d [500 mg/d d0-choline + 50 mg/d deuterium-labeled choline (d9-choline); intervention] or 25 mg/d (25 mg/d d9-choline; control) from gestational week (GW) 12-16 until delivery. All participants received a daily 200-mg DHA supplement and consumed self-selected diets. Fasting blood samples were obtained at baseline, GW 20-24, and GW 28-32; maternal/cord blood was obtained at delivery. Mixed-effects linear models were used to assess the impact of prenatal choline supplementation on maternal and newborn DHA status. RESULTS: Choline supplementation (550 vs. 25 mg/d) did not achieve a statistically significant intervention × time interaction for RBC PC-DHA (P = 0.11); a significant interaction was observed for plasma PC-DHA and RBC total DHA, with choline supplementation yielding higher levels (+32-38% and +8-11%, respectively) at GW 28-32 (P < 0.05) and delivery (P < 0.005). A main effect of choline supplementation on plasma total DHA was also observed (P = 0.018); its interaction with time was not significant (P = 0.068). Compared with controls, the intervention group exhibited higher (P = 0.007; main effect) plasma enrichment of d3-PC (d3-PC/total PC). Moreover, the ratio of d3-PC to d9-PC was higher (+50-67%; P < 0.001) in the choline intervention arm (vs. control) at GW 20-24, GW 28-32, and delivery. CONCLUSIONS: Prenatal choline supplementation improves hepatic DHA export and biomarkers of DHA status by bolstering methyl group supply for PEMT activity among pregnant participants consuming supplemental DHA. This trial is registered at www.clinicaltrials.gov as NCT03194659.


Assuntos
Colina , Ácidos Docosa-Hexaenoicos , Biomarcadores , Suplementos Nutricionais , Feminino , Humanos , Recém-Nascido , Fosfatidilcolinas/metabolismo , Gravidez , Vitaminas
8.
Sci Adv ; 7(45): eabj1561, 2021 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-34739318

RESUMO

PAX8 is a key thyroid transcription factor implicated in thyroid gland differentiation and function, and PAX8 gene methylation is reported to be sensitive to the periconceptional environment. Using a novel recall-by-epigenotype study in Gambian children, we found that PAX8 hypomethylation at age 2 years is associated with a 21% increase in thyroid volume and an increase in free thyroxine (T4) at 5 to 8 years, the latter equivalent to 8.4% of the normal range. Free T4 was associated with a decrease in DXA-derived body fat and bone mineral density. Furthermore, offspring PAX8 methylation was associated with periconceptional maternal nutrition, and methylation variability was influenced by genotype, suggesting that sensitivity to environmental exposures may be under partial genetic control. Together, our results demonstrate a possible link between early environment, PAX8 gene methylation and thyroid gland development and function, with potential implications for early embryonic programming of thyroid-related health and disease.

9.
J Nutr ; 151(2): 361-369, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-32939556

RESUMO

BACKGROUND: Recently, we showed that there are higher protein, lysine, and phenylalanine requirements in late stages of pregnancy compared with early stages. Animal studies have suggested an increased dietary need for specific dispensable amino acids in pregnancy; whether such a need exists in human pregnancies is unknown. OBJECTIVE: The objective of the current study was to examine whether healthy pregnant women at midgestation (20-29 wk) and late gestation (30-40 wk) have a dietary demand for glycine, a dispensable amino acid, using the indicator amino acid oxidation method and measurement of plasma 5-oxoproline concentrations. METHODS: Seventeen healthy women (aged 26-36 y) randomly received different test glycine intakes (range: 5-100 mg·kg-1·d-1) during each study day in midgestation (∼26 wk, n = 17 observations in 9 women) and late gestation (∼35 wk, n = 19 observations in 8 women). Diets were isocaloric with energy at 1.7 × resting energy expenditure. Protein was given as a crystalline amino acid mixture based on egg protein composition at current estimated average requirement (EAR; 0.88 g·kg-1·d-1). Breath samples were collected at baseline and isotopic steady state to measure oxidation of L-[1-13C]phenylalanine to 13CO2 (F13CO2). Plasma was collected at the sixth hour of the study day. Linear regression crossover analysis and simple linear regression were used to assess responses in F13CO2 and plasma 5-oxoproline concentrations to different glycine intakes. RESULTS: No statistically significant responses were observed in midgestation. However, in late gestation, lower glycine intakes resulted in higher rates of F13CO2 (suggesting low protein synthesis) with a breakpoint for phenylalanine oxidation at >37 mg glycine·kg-1·d-1 and higher plasma 5-oxoproline (suggesting low glycine availability) with a breakpoint >27 mg glycine·kg-1·d-1. CONCLUSIONS: The findings suggest that glycine should be considered a "conditionally" indispensable amino acid during late gestation, especially when protein intakes are at 0.88 g·kg-1·d-1, the current EAR. This trial was registered at clinicaltrials.gov as NCT02149953.


Assuntos
Glicina/metabolismo , Necessidades Nutricionais , Segundo Trimestre da Gravidez/metabolismo , Terceiro Trimestre da Gravidez/metabolismo , Adulto , Dieta , Feminino , Glicina/administração & dosagem , Humanos , Gravidez
10.
Pediatr Nephrol ; 36(4): 987-993, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33067673

RESUMO

BACKGROUND: Oxythiamine is a uremic toxin that acts as an antimetabolite to thiamine and has been associated with cases of Shoshin beriberi syndrome in adults. We sought to identify whether surgical stress and ischemia/reperfusion injury may precipitate functional thiamine deficiency in children peritransplant. METHODS: We retrospectively analyzed a cohort of pediatric kidney transplant recipients. Oxythiamine levels were measured in pre-transplant serum samples by mass spectrometry and tested for association with severity of lactic acidosis in the first 24 h post-transplant. Secondary outcomes included association with hyperglycemia and indicators of dialysis adequacy (DA). RESULTS: Forty-seven patients were included in the analysis. Median oxythiamine levels differed by modality, measuring 0.67 nM (IQR 0.31, 0.74), 0.34 nM (IQR 0.28, 0.56), and 0.25 nM (IQR 0.17, 0.38) for peritoneal dialysis (PD), hemodialysis (HD), and no dialysis, respectively (p = 0.05). Oxythiamine was associated with 24-h lactate levels (r = 0.38, p = 0.02) and negatively associated with DA (r = - 0.44, p = 0.02). Median oxythiamine levels were higher in patients with poor DA (0.92 nM (IQR 0.51, 1.01) vs. 0.40 nM (IQR 0.24, 0.51), p < 0.01). Sensitivity analysis showed absence of residual association of oxythiamine with 24-h lactate or dialysis modality, but remained significant for DA (p = 0.03). One patient manifested Shoshin beriberi syndrome (oxythiamine 2.03 nM). CONCLUSIONS: Oxythiamine levels are associated with DA at transplant. Patients on PD with no residual kidney function and low DA manifest the highest oxythiamine levels and may be at an increased risk for developing acute Shoshin beriberi syndrome in the early post-transplant period.


Assuntos
Beriberi , Transplante de Rim , Oxitiamina/sangue , Criança , Progressão da Doença , Hemodinâmica , Humanos , Transplante de Rim/efeitos adversos , Lactatos/sangue , Diálise Renal , Estudos Retrospectivos
11.
PLoS One ; 15(12): e0243936, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33315905

RESUMO

BACKGROUND: The etiology of postpartum psychopathologies are not well understood, but folate metabolism pathways are of potential interest. Demands for folate increase dramatically during pregnancy, low folate level has been associated with psychiatric disorders, and supplementation may improve symptomatology. The MTHFR C677T variant influences folate metabolism and has been implicated in depression during pregnancy. OBJECTIVE: To conduct a prospective longitudinal study to explore the relationship between MTHFR C677T genotype, folate levels, and postpartum psychopathology in at-risk women. HYPOTHESIS: In the first three months postpartum, folate will moderate a relationship between MTHFR genotype and depression, with TT homozygous women having more symptoms than CC homozygous women. METHODS: We recruited 365 pregnant women with a history of mood or psychotic disorder, and at 3 postpartum timepoints, administered the Edinburgh Postnatal Depression Scale (EPDS); Clinician-Administered Rating Scale for Mania (CARS-M) and the Positive and Negative Symptom Scale (PANSS) and drew blood for genotype/folate level analysis. We used robust linear regression to investigate interactions between genotype and folate level on the highest EPDS and CARS-M scores, and logistic regression to explore interactions with PANSS psychosis scores above/below cut-off. RESULTS: There was no significant interaction effect between MTHFR genotype and folate level on highest EPDS (p = 0.36), but there was a significant interaction between genotype, folate level and log(CARS-M) (p = 0.02); post-hoc analyses revealed differences in the effect of folate level between CC/CT, and TT genotypes, with folate level in CC and CT having an inverse relationship with symptoms of mania, while there was no relationship in participants with TT genotype. There was no significant interaction between MTHFR genotype and folate level on the likelihood of meeting positive symptom criteria for psychosis on the PANSS (p = 0.86). DISCUSSION: These data suggest that perhaps there is a relationship between MTHFR C677T, folate level and some symptoms of postpartum psychopathology.


Assuntos
Depressão Pós-Parto/genética , Ácido Fólico/genética , Metilenotetra-Hidrofolato Redutase (NADPH2)/genética , Período Pós-Parto/genética , Adulto , Alelos , Depressão Pós-Parto/sangue , Depressão Pós-Parto/patologia , Depressão Pós-Parto/psicologia , Feminino , Ácido Fólico/sangue , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Genótipo , Humanos , Estudos Longitudinais , Mania/genética , Mania/patologia , Mania/psicologia , Pessoa de Meia-Idade , Período Pós-Parto/psicologia , Gravidez , Estudos Prospectivos , Transtornos Psicóticos/genética , Transtornos Psicóticos/patologia , Transtornos Psicóticos/psicologia , Fatores de Risco , Adulto Jovem
12.
J Nutr ; 150(3): 518-525, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-31754697

RESUMO

BACKGROUND: Long-chain n-6 and n-3 PUFAs are important for growth and development. However, little is known about requirements and current dietary intakes of these fatty acids in toddlers. OBJECTIVES: This study assessed dietary intakes of n-6 and n-3 PUFAs and determined the relation to circulating PUFAs in toddlers at ages 1 and 2 y. METHODS: This is a secondary analysis of data from toddlers enrolled in a double-blind randomized controlled trial of arachidonic acid (ARA) and DHA supplementation between ages 1 and 2 y. Dietary intakes of fatty acids were estimated by 3-d food records, and fatty acid composition in plasma total phospholipids, red blood cell phosphatidylethanolamine (PE), and phosphatidylcholine (PC) were assessed by GC at baseline in all subjects (n = 110; mean age 1.12 y; 64% male) and in the control subjects at 2 y (n = 43). RESULTS: The dietary intakes of ARA, EPA, and DHA at age 1 y (baseline) were [mean (median)] 36.8 (30.0), 16.0 (0.00), and 31.1 (10.0) mg/d, respectively. Dietary intakes increased to 52.7 (45.0), 35.8 (0.00), and 64.8 (20.0) mg/d, respectively, at age 2 y (P < 0.05). The predominant dietary source of EPA and DHA was fish/seafood; eggs were an important source of ARA and DHA. Dietary DHA intakes were positively associated with plasma PE and PC DHA (P < 0.05). No relations between dietary ARA intakes and plasma PE and PC ARA (P > 0.05) were observed. CONCLUSIONS: These findings suggest that most toddlers are not meeting the recommendation for dietary PUFA intakes and that higher dietary DHA intakes are reflected in plasma PE and PC DHA composition. Further work is required to investigate a biomarker for dietary ARA intake. This trial is registered at clinicaltrials.gov as NCT01263912.


Assuntos
Ácido Araquidônico/sangue , Dieta , Ácidos Docosa-Hexaenoicos/sangue , Recomendações Nutricionais , Biomarcadores/sangue , Pré-Escolar , Método Duplo-Cego , Feminino , Humanos , Lactente , Masculino , Ensaios Clínicos Controlados Aleatórios como Assunto
13.
Nutrients ; 11(12)2019 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-31835736

RESUMO

Choline is critical for infant development and mother's milk is the sole source of choline for fully breastfed infants until six months of age. Human milk choline consists to 85% of water-soluble forms of choline including free choline (FC), phosphocholine (PhosC), and glycerophosphocholine (GPC). Donor milk requires safe handling procedures such as cold storage and pasteurization. However, the stability of water-soluble forms of choline during these processes is not known. The objectives of this research were to determine the effect of storage and pasteurization on milk choline concentration, and the diurnal intra- and inter-individual variability of water-soluble choline forms. Milk samples were collected from healthy women who were fully breastfeeding a full-term, singleton infant <6 months. Milk total water-soluble forms of choline, PhosC, and GPC concentrations did not change during storage at room temperature for up to 4 h. Individual and total water-soluble forms of choline concentrations did not change after storage for 24 h in the refrigerator or for up to one week in the household freezer. Holder pasteurization decreased PhosC and GPC, and thereby total water-soluble choline form concentrations by <5%. We did not observe diurnal variations in PhosC and total water-soluble forms of choline concentrations, but significant differences in FC and GPC concentrations across five sampling time points throughout one day. In conclusion, these outcomes contribute new knowledge for the derivation of evidence-informed guidelines for the handling and storage of expressed human milk as well as the development of optimized milk collection and storage protocols for research studies.


Assuntos
Colina , Leite Humano/química , Adulto , Aleitamento Materno , Feminino , Congelamento , Humanos , Bancos de Leite Humano , Leite Humano/metabolismo , Pasteurização
14.
J Am Heart Assoc ; 8(21): e014022, 2019 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-31665961

RESUMO

Background Fatty acid (FA) provision to the heart is from cardiomyocyte and adipose depots, plus lipoprotein lipase action. We tested how a graded reduction in insulin impacts the source of FA used by cardiomyocytes and the cardiac adaptations required to process these FA. Methods and Results Rats injected with 55 (D55) or 100 (D100) mg/kg streptozotocin were terminated after 4 days. Although D55 and D100 were equally hyperglycemic, D100 showed markedly lower pancreatic and plasma insulin and loss of lipoprotein lipase, which in D55 hearts had expanded. There was minimal change in plasma FA in D55. However, D100 exhibited a 2- to 3-fold increase in various saturated, monounsaturated, and polyunsaturated FA in the plasma. D100 demonstrated dramatic cardiac transcriptomic changes with 1574 genes differentially expressed compared with only 49 in D55. Augmented mitochondrial and peroxisomal ß-oxidation in D100 was not matched by elevated tricarboxylic acid or oxidative phosphorylation. With increasing FA, although control myocytes responded by augmenting basal respiration, this was minimized in D55 and reversed in D100. Metabolomic profiling identified significant lipid accumulation in D100 hearts, which also exhibited sizeable change in genes related to apoptosis and terminal deoxynucleotidyl transferase dUTP nick-end labeling-positive cells. Conclusions With increasing severity of diabetes mellitus, when the diabetic heart is unable to control its own FA supply using lipoprotein lipase, it undergoes dramatic reprogramming that is linked to handling of excess FA that arise from adipose tissue. This transition results in a cardiac metabolic signature that embraces mitochondrial FA overload, oxidative stress, triglyceride storage, and cell death.


Assuntos
Tecido Adiposo/metabolismo , Morte Celular/fisiologia , Diabetes Mellitus Experimental/metabolismo , Ácidos Graxos/metabolismo , Lipase Lipoproteica/metabolismo , Miocárdio/metabolismo , Animais , Masculino , Ratos , Ratos Wistar , Índice de Gravidade de Doença
15.
Paediatr Child Health ; 24(2): 115-118, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30996602

RESUMO

Transitional hypoglycemia is common in at-risk newborns, frequently resulting in therapeutic interference with bonding and breastfeeding; 40% dextrose gel massaged to the buccal mucosa has been shown to decrease hypoglycemia <2.6 mmol/L and NICU admissions. However, in the absence of a newborn-specific product, over-the-counter diabetes-care products with poorly documented composition are being used for neonates. We analyzed the carbohydrate content, and compared composition of the two commercially available gels in Canada, Dex4 and Insta-Glucose. We found that the glucose concentrations were significantly different from the expected 40% glucose, and that they contain artificial colorants, flavours and preservatives. In addition, we observed inconsistent concentration differences within each tube when aliquotes from the top, middle, or bottom were measured. There is a need for a custom made neonatal dextrose gel dispensed in unit dose vials, with a standardized concentration of glucose, and without chemical substances one would generally not recommend administering to newly born infants.

16.
Carcinogenesis ; 40(3): 448-460, 2019 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-30874285

RESUMO

In previous studies, we found that low-carbohydrate (CHO) diets reduced the incidence of tumors in mice genetically predisposed to cancer. However, because >90% of human cancers arise via carcinogen-induced somatic mutations, we investigated, herein, the role that different types and levels of CHO, protein and lipid play in lung cancer induced by the tobacco-specific carcinogen, nicotine-derived nitrosamine ketone (NNK) in A/J mice. We found lowering CHO levels significantly reduced lung nodules and blood glucose levels. We also found that soy protein was superior to casein and that coconut oil was ineffective at reducing lung nodules. Diets containing amylose or inulin (at 15% of total calories), soy protein (at 35%) and fat (at 50%, 30% being fish oil) were the most effective at reducing lung nodules. These fish oil-containing diets increased plasma levels of the ketone body, ß-hydroxybutyrate, while reducing both insulin and 8-isoprostane in plasma and bronchoalveolar interleukin-12 and lung PGE2 levels. After only 2 weeks on this diet, the levels of γ-H2AX were significantly reduced, 24 hours after NNK treatment. Housing these mice in two-tiered rat cages with exercise wheels led to similar mouse weights on the different diets, whereas keeping mice in standard mouse cages led to both significant weight differences between the low-CHO, soy protein, fish oil diet and Western diet and substantially more lung nodules than in the two-tiered cages. Our results suggest that low-CHO, soy protein, fish oil-containing diets, together with exercise, may reduce the incidence of lung cancer.


Assuntos
Carcinógenos/toxicidade , Dieta , Neoplasias Pulmonares/induzido quimicamente , Nicotiana/química , Condicionamento Físico Animal , Animais , Líquido da Lavagem Broncoalveolar , Carboidratos da Dieta/administração & dosagem , Feminino , Camundongos , Nitrosaminas/toxicidade , Proteínas de Soja/administração & dosagem
17.
Sci Rep ; 8(1): 15277, 2018 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-30323309

RESUMO

Human milk contains nutritional, immunoprotective and developmental components that support optimal infant growth and development. The milk fat globule membrane (MFGM) is one unique component, comprised of a tri-layer of polar lipids, glycolipids, and proteins, that may be important for brain development. MFGM is not present in most infant formulas. We tested the effects of bovine MFGM supplementation on reflex development and on brain lipid and metabolite composition in rats using the "pup in a cup" model. From postnatal d5 to d18, rats received either formula supplemented with MFGM or a standard formula without MFGM; a group of mother-reared animals was used as reference/control condition. Body and brain weights did not differ between groups. MFGM supplementation reduced the gap in maturation age between mother-reared and standard formula-fed groups for the ear and eyelid twitch, negative geotaxis and cliff avoidance reflexes. Statistically significant differences in brain phospholipid and metabolite composition were found at d13 and/or d18 between mother-reared and standard formula-fed groups, including a higher phosphatidylcholine:phosphatidylethanolamine ratio, and higher phosphatidylserine, glycerol-3 phosphate, and glutamine in mother-reared compared to formula-fed pups. Adding MFGM to formula narrowed these differences. Our study demonstrates that addition of bovine MFGM to formula promotes reflex development and alters brain phospholipid and metabolite composition. Changes in brain lipid metabolism and their potential functional implications for neurodevelopment need to be further investigated in future studies.


Assuntos
Química Encefálica/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Alimentos Formulados , Glicolipídeos/administração & dosagem , Glicoproteínas/administração & dosagem , Metabolismo dos Lipídeos/efeitos dos fármacos , Reflexo/efeitos dos fármacos , Ração Animal/análise , Animais , Animais Recém-Nascidos , Comportamento Animal/efeitos dos fármacos , Encéfalo/crescimento & desenvolvimento , Encéfalo/metabolismo , Suplementos Nutricionais , Feminino , Glicolipídeos/farmacologia , Glicoproteínas/farmacologia , Gotículas Lipídicas , Lipídeos de Membrana/administração & dosagem , Lipídeos de Membrana/farmacologia , Gravidez , Ratos , Ratos Sprague-Dawley , Reflexo/fisiologia
18.
Curr Dev Nutr ; 2(8): nzy055, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30140787

RESUMO

BACKGROUND: The naturally occurring α-tocopherol (α-T) stereoisomer, RRR-α-tocopherol (RRR-α-T), is known to be more bioactive than all-rac-α-tocopherol (all-rac-α-T), a synthetic racemic mixture of 8 stereoisomers. There is widespread use of all-rac-α-T in maternal supplements. OBJECTIVE: The aim of the study was to thoroughly describe the α-T stereoisomer profile of human milk. METHODS: We measured the α-T stereoisomer profile in milk from 2 cohorts of women: a cohort of 121 women who provided milk on days 30 and 60 of lactation (study 1) and a separate cohort of 51 women who provided milk on days 10, 21, 71, and 120 of lactation (study 2). RESULTS: RRR-α-T was the predominant stereoisomer (P < 0.0001) in all samples in both studies despite a large intrasubject range in total α-T (0.7-22 µg/mL). On average, RRR-α-T comprised 73-76% of total α-T, but average values for the synthetic stereoisomers were RRS, 8-14%; RSR, 6-8%; RSS, 5-6%; and the sum of 2S stereoisomers (Σ2S), 3-5%. Despite the predominance of RRR-α-T, the sum of the synthetic stereoisomers comprised as much as 48% of total α-T. We calculated the ratio of RRR to the sum of the synthetic 2R (RRS + RSR + RSS) stereoisomers (s2R) to assess the degree to which RRR is favored in milk. Consistent with discrimination among 2R stereoisomers in mammary tissue, RRR/s2R values ranged from 2.8 to 3.6, as opposed to the expected ratio of 0.33 if there was no discrimination. However, the RRR to s2R ratio did not correlate with milk α-T concentration, but both components of the ratio did. CONCLUSIONS: RRR-α-T is the predominant stereoisomer in human milk, concentrations of synthetic 2R stereoisomers were notable, and the relation between milk total α-T and stereoisomer profile is complex. Due to the wide range found in milk α-T stereoisomer profile, investigation into its impact on α-T status and functional outcomes in breastfed infants is warranted.

19.
Clin Biochem ; 60: 77-83, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30125545

RESUMO

BACKGROUND: Plasma concentrations of choline and its metabolites might serve as biomarkers for the health outcomes of several pathological states such as cardiovascular disease and cancer. However, information about the reliability of biomarkers of choline status is limited. We investigated biological variations in repeated measures of choline and metabolites in healthy adults to assess them as biomarkers. METHODS: Blood samples were collected after an overnight fast at three-time points 12 days apart from 40 adults (mean age, 33 y; male, n = 21). A subset (n = 19; [male, n = 8]) provided one additional sample after a breakfast meal. Plasma free choline, betaine and dimethylglycine were measured using liquid chromatography-tandem mass spectrometry, and plasma phosphatidylcholine, sphingomyelin and lysophosphatidylcholine were measured using high-performance liquid chromatography. RESULTS: The biological variations observed for choline and metabolites were ≤ 13% for adult fasting samples. This corresponded to intra-class correlations (ICC) that ranged from 0.593 to 0.770 for fasting values for choline and metabolites. A similar ICC range was also obtained between fasting and post-prandial states. Although most post-prandial concentrations of choline and metabolites were significantly higher (P < .05) than fasting, all fell within a calculated reference interval. The participants were correctly classified in tertiles for fasting and post-prandial states for choline (68%) and metabolites (range = 32% phosphatidylcholine and 79% for sphingomyelin). CONCLUSIONS: These findings indicate that biological variations of choline and metabolites are low in healthy adults and values from a single blood sample can be used as a biomarker. However, choosing phosphatidylcholine as a biomarker is less reliable.


Assuntos
Biomarcadores/sangue , Colina/sangue , Adulto , Colina/metabolismo , Cromatografia Líquida de Alta Pressão , Jejum , Feminino , Humanos , Masculino , Período Pós-Prandial , Reprodutibilidade dos Testes
20.
J Nutr ; 148(8): 1309-1314, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-29986040

RESUMO

Background: Choline is an important nutrient during development. However, there are limited data on dietary choline intake and status in toddlers and the relation to neurodevelopmental outcomes. Objective: This study assessed dietary choline intake and status in healthy toddlers at ages 1 and 2 y and determined the relation to neurodevelopmental outcomes. Methods: This is a secondary analysis of data from healthy toddlers enrolled in a double-blind, randomized controlled trial of long-chain polyunsaturated fatty acid supplementation between ages 1 and 2 y. Dietary intakes of betaine and choline were estimated by 3-d food records; plasma free choline, betaine, and dimethylglycine were quantified by liquid chromatography-tandem mass spectrometry. Developmental outcomes were assessed at age 2 y with the use of the Bayley Scales of Infant and Toddler Development, 3rd edition (Bayley-III), Cognitive and Language composites, and the Beery-Buktenica Developmental Test of Visual-Motor Integration (Beery-VMI). Results: The mean ± SD daily intake for total choline at age 1 y was 174 ± 56.2 mg/d and increased (P < 0.001) to 205 ± 67.5 mg/d at age 2 y. At ages 1 and 2 y, 71.8% and 55.8%, respectively, of toddlers did not meet the recommended 200-mg/d Adequate Intake (AI) for dietary choline. At age 1 y, mean ± SD plasma free choline, betaine, and dimethylglycine concentrations were 10.4 ± 3.3, 41.1 ± 15.4, and 4.1 ± 1.9 µmol/L, respectively. Plasma free choline (8.5 ± 2.3 µmol/L) and dimethylglycine (3.2 ± 1.3 µmol/L) concentrations were lower (P < 0.001) at age 2 y. Plasma betaine concentrations were positively associated with the Beery-VMI (ß = 0.270; 95% CI: 0.026, 0.513; P = 0.03) at age 2 y. Conclusions: These findings suggest that most toddlers are not meeting the recommended AI for dietary choline and that higher plasma betaine concentrations are associated with better visual-motor development at age 2 y. Further work is required to investigate choline metabolism and its role in neurodevelopment in toddlers. The trial is registered at clinicaltrials.gov as NCT01263912.


Assuntos
Betaína/sangue , Desenvolvimento Infantil , Colina/administração & dosagem , Dieta , Estado Nutricional , Pré-Escolar , Colina/metabolismo , Método Duplo-Cego , Feminino , Humanos , Lactente , Masculino , Necessidades Nutricionais , Recomendações Nutricionais , Sarcosina/análogos & derivados , Sarcosina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA